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Abstract. A new algorithm, featuring overlapping domain computing further demands fast algorithms for the genera-
decompositions, for the parallel construction of Delaunaytion of high-resolution spatial meshes that are also of high
and Voronoi tessellations is developed. Overlapping allowsquality, e.g. featuring variable resolution with smooth tran-
for the seamless stitching of the partial pieces of the globakition regions; otherwise, the meshing part can dominate the
Delaunay tessellations constructed by individual processorgest of the discretization and solution processes. However,
The algorithm is then modified, by the addition of stereo- creating such meshes can be time consuming, especially for
graphic projections, to handle the parallel construction ofhigh-quality, high-resolution meshing. Attempts to speed up
spherical Delaunay and Voronoi tessellations. The algo-the generation of Delaunay tessellations via parallel divide-
rithms are then embedded into algorithms for the paral-and-conquer algorithms were made in, edignoni et al.
lel construction of planar and spherical centroidal Voronoi (1998; Chernikov and Chrisochoid¢2008, however these
tessellations that require multiple constructions of Delau-approaches are restricted to two-dimensional planar surfaces.
nay tessellations. This combination of overlapping domainWith the current need for high, variable-resolution grid gen-
decompositions with stereographic projections provides aerators in mind, we first develop a new algorithm that makes
unique algorithm for the construction of spherical meshesuse of a novel approach to domain decomposition for the
that can be used in climate simulations. Computational testéast, parallel generation of Delaunay and Voronoi grids in
are used to demonstrate the efficiency and scalability of théeuclidean domains.
algorithms for spherical Delaunay and centroidal Voronoi Centroidal Voronoi tessellations provide one approach
tessellations. Compared to serial versions of the algorithnfor high-quality Delaunay and Voronoi grid generatidbu(
and to STRIPACK-based approaches, the new parallel algoet al, 1999 2003h 2006h Du and Gunzburger2002
rithm results in speedups for the construction of sphericalNguyen et al.2008. The efficient construction of such grids
centroidal Voronoi tessellations and spherical Delaunay tri-involves an iterative procesBq et al, 1999 that calls for the
angulations. determination of multiple Delaunay tessellations; we show
how our new parallel Delaunay algorithm is especially use-
ful in this context.

Climate modelling is a specific field which has recently
begun adopting Voronoi tessellations as well as triangular

Voronoi diagrams and their dual Delaunay tessellations havéneshes for the spatial discretization of partial differential
become, in many settings, natural choices for spatial grid-edquations Rain et al. 2005 Weller et al, 2009 Ju et al,

ing due to their ability to handle arbitrary boundaries and2008 2011 Ringler et al, 2011). As this is a special in-
refinement well. Such grids are used in a wide range of apferest of ours, we also develop a new parallel algorithm for
plications and can, in principle, be created for almost anythe generation of Voronoi and Delaunay tessellations for the
geometry in two and higher dimensions. The recent trencentire sphere or some subregion of interest. The algorithm
towards the exascale in most aspects of high-performanctSes stereographic projections, similambrechts et al.

1 Introduction
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(2008, to transform these tasks into planar Delaunay con-a connectivity or neighbour list is defined which consists of
structions for which we apply the new parallel algorithm the indices of all the spheress € S, i # k, that overlap with
we have developed for that purpose. Spherical centroidal;. From the given point seP, we then createvV smaller
Voronoi tessellation (SCVT) based grids are especially depoint setsP;, k=1,..., N, each of which consists of the
sirable in climate modelling because they not only providepoints in P which are in the sphers;. Due to the overlap
for precise grid refinement, but also feature smooth transi-of the spheres;, a pointinP may belong to multiple points
tion regions Ringler et al, 2011, 2013. We show how such setsP;. This defines what we are referring to as our sorting
grids can be generated using the new parallel algorithm fomethod. The presented sort method is the simplest to under-
spherical Delaunay tessellations. stand, but provides issues with load balancing on variable
The paper is organized in the following fashion. In resolution meshes. For that reason, we use an alternate sort
Sect.2.1, we present our new parallel algorithm for the con- method in practice which is described Sett.1
struction of such tessellations. In SE&R, we provide a brief The next step is to construct tide Delaunay tessellations
discussion of centroidal Voronoi tessellations (CVTs) fol- T, k=1, ..., N, of the N point setsP;, k=1,..., N. For
lowed by showing how the new parallel Delaunay tessella-this purpose, one can use any Delaunay tessellation method
tion algorithm can be incorporated into an efficient methodat one’s disposal; for example, in the plane, one can use the
for the construction of CVTs. In Se@.1, we provide a short  Delaunay triangulator that is part of the Triangle software of
review of stereographic projections followed, in Seg, Shewchu1996. A note should be made, that these triangu-
by a presentation of the new parallel algorithm for the con-lation software packages only aid in the computation of the
struction of spherical Delaunay and Voronoi tessellations. Intriangulation. For example, they can not be used to determine
Sect.3.3 we consider the parallel construction of spherical which points should be triangulated. These Delaunay tessel-
CVTs. In Sect4, the results of numerical experiments and lations, of course, can be constructed completely in parallel
demonstrations of the new algorithms are given; for the sakefter assigning one point s€} to each ofN processors.
of brevity, we only consider the algorithms for grid genera- At this point, we are almost but not quite ready to merge
tion on the sphere. Finally, in Se&.concluding remarks are the N local Delaunay tessellations into a single global one.
provided. Before doing so, we deal with the fact that although, by con-
struction, the tessellatiofi, of the point setP; is a Delaunay
tessellation ofPy, there are very likely to be simplices in the
2 Parallel Delaunay and Voronoi tessellation tessellationT; that may not be globally Delaunay, i.e. that
construction in R¥ may not be Delaunay with respect to points Anthat are
not in Px. This follows because the points in afy are un-
In this section, we present a new method for the constructioraware of the triangles and points outsideSpfso that there
of Delaunay and Voronoi tessellations. The algorithms aremay be points inP that are not inP; that lie within the cir-

first presented ifR? and later extended &3, cumsphere of a simplex ifi.. In fact, only simplices whose
_ _ circumspheres are completely contained inside of theSpall
2.1 Parallel algorithm for Delaunay tessellation are guaranteed to be globally Delaunay; those points satisfy
construction the criteria
The construction of planar Delaunay triangulations in paral-”ck —Cill+7i <re, @)

lel has been of interest for several years; see famato and  whereg; and7; are the centre and radius of the circumsphere
Preparatg1993; Cignoni et al.(1998; Zhou et al.(2001);  of thei-th triangle in the local Delaunay tessellatizin

Batista et al(2010. Typically, such algorithms divide the 5o, at this point, for each=1,..., N, we construct the
point set up into several smaller subsets, each of which cagjangulation7} by discarding all simplices in the local De-
then be triangulated independently from the others. The refaunay tessellatiorf; whose circumspheres are not com-
sulting triangulations need to be stitched together to formpjetely contained irfy, i.e. all simplices that do not satisfy

a global triangulation. This stitching, or merge step, is typi- Eq. (1). Figure1 shows one of the local Delaunay triangula-
cally computed serially because one may need to modify sigtions 7; and the triangulatior}. after the deletion of trian-
nificant portions of the individual triangulations. The merge gles that are not guaranteed to satisfy the Delaunay property
step is the main difference between the different parallel al-gjopally.

gorithms. Here, we provide a new alternative merge step that, The final step is to merge thé modified tessellation;,
because no modifications of the individual triangulations arex — 1, ..., N, that have been constructed completely in paral-

needed, can be performed in parallel. lel into a single global tessellation. The key observation here
We are given a set of point® ={x;}’_, in a given s thateach regional tessellatiod; is now exactly a por-
domain Q@ c R¥. We begin by covering2 by a setS = tion of the global Delaunay tessellatidrecause if two lo-
{8 (ck, rk)},i"zl of N overlapping sphere%;, each of whichis  cal tessellations?i andfk overlap, they must coincide wher-
defined by a centre poiat and radiusy. For each spherg, ever they overlap. This follows from the uniqueness property
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Fig. 1. A local Delaunay triangulatiof}, (left) and the triangulatiorﬂ after the deletion of triangles that are not guaranteed to satisfy the
Delaunay property globally.

of the Delaunay tessellations. Thuke union of the local points than are required. This is an even greater challenge
Delaunay tessellations is the global Delaunay tessellation when considering variable resolution meshes and regions that
by using an overlapping domain decomposition, the stitch-straddle both fine and coarse regions.

ing of the regional Delaunay tessellations into a global one In order to properly sort the points, the overlap of the re-
is transparent. Of course, some bookkeeping chores have fgions need to be large enough to satisfy the following three
be done such as rewriting simplex information in terms of requirements:

lobal point indi n nting overlapping simpli nl . . . . .
global point indices and counting overlapping simplices only - _ all points contained in a region’s Voronoi cell are not

once. . . )
In summary, the algorithm for the construction of a Delau- vertices of any non-Delaunay triangles;
nay tessellation in parallel consists of the following steps: — the resulting triangulation includes all Delaunay trian-

les for which owned points are vertices of;
— define overlapping ballS;, k = 1,..., N, that cover the g P

given region<; — the point set defines all triangles whose circumcircles
. . . fall in the region’s Voronoi cell.
— sort the given point seP into the subsetsP;, k =

1,..., N, each containing points iR that are inSy; If all three of these are satisfied, the point set can be used in

any of the algorithms described in this paper.
—fork=1,..., N, construct in parallel th&v Delaunay Whereas we have yet to describe a method for the choice
tessellationg} of the points set#; of region radius, let us first begin by describing the two ex-
R tremes. First, consider a radius that encompasses the entire
— fork=1,..., N, constructin parallel the tessellatiBh  domain. This obviously provides enough overlap to guaran-
by removing from7j all simplices that are not guaran- tee the three conditions are satisfied. Second, consider a ra-
teed to satisfy the circumsphere property; dius that is equivalent to the edges of the region’s Voronoi
cell, and no larger. In this case, the overlap is obviously in-
sufficient to satisfy the three conditions. This can be seen if
we assume at least one non-Delaunay triangle exists at the

Once a Delaunay tessellation is determined, it is an easy maoundary of the Voronoi cell, in which case both criteria 1

ter, at least for domains iR? andR3, to construct the dual and 2 are notmet. .
\Voronoi tessellation; see, e @kabe et al(2000). In practice, choosing the radii},_, to be equal to the
maximum distance from the centeg of its ball S; to the

2.1.1 Methods for decomposing global point set centre of all its adjacent balls allows enough overlap in quasi-
uniform cases. However, this method still fails to provide

In Sect.2.1, an initial method was presented for distribut- enough overlap in certain cases. All of the failures occur
ing points between regions. We refer to this method as a diswhen the global point set does not include enough points
tance sort. The distance between a point and a region centffer the decomposition of choice. Before discussing the target
is computed, and if the distance is less than the region’s ranumber of points for a given decomposition, an alternative
dius the point is considered for triangulation. The key diffi- sorting method is introduced.

culty for this sort method is determining a radius which pro- In an attempt to provide better load balancing in gen-
vides enough overlap, without including significantly more eral for arbitrary density functions, we also developed an

— construct the Delaunay tessellationfs the union of
the N modified Delaunay tessellation{lﬁk},é’:l.
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alternative sorting method. We refer to this sorting method ads achieved, e.g. until the movement of generators falls be-
the Voronoi sort. In this case, the method for sorting pointslow a prescribed tolerance. The convergence properties of
makes use of the Voronoi property that all points containedLloyd’s method are rigorously studied Du et al.(20063.
within a Voronoi cell are closer to that cell’s generator than The point-density functiom plays a crucial role in how
any other generator in the set. It is important to note thatthe converged generators are distributed and the relative sizes
the coarse Voronoi cells used for domain decomposition her®f the corresponding Voronoi cells. If we arbitrarily select
are not the same as Voronoi cells related to the Delaunaywo Voronoi cellsV; andV; from a CVT, their grid spacing
triangulation we are attempting to construct. To begin, theand density are related as
point set is divided into the Voronoi cells defined by the re- )
gion's centre, and its neighbour’s region centres. The uniong;  ( p(x;) 72
of the owned region’s point set and its immediately adjacentj,; ™ (p(xi))
region’s point sets defines the final set of points for triangu- -
lation. whereh; denotes a measure of the linear dimension, e.g. the
As with the distance sort, the Voronoi sort meets all of the diameter, of the celV; andx; denotes a point, e.g. the gen-
criteria for use in the described algorithms. However, it canerator, inV;. Thus, the point-density function can be used
also still fail in certain cases. Both sort methods can fail if theto produce nonuniform grids in either a passive or adaptive
target point set is too small for the target decomposition. Inmanner by prescribing a or by connecting to an error in-
this case, one or more regions do not include enough pointslicator, respectively. Although the relation E) (s at the
to correctly compute a triangulation through any method. Inpresent time a conjecture, its validity has been demonstrated
practice, these algorithms fail if the decomposition includesthrough many numerical studies; see, @g.et al.(1999;
more than two region®’, and the point set contains less than Ringler et al.(2011). CVTs and their dual Delaunay tes-
16N points, or two bisections. For example, a 12 processoisellations have been successfully used for the generation of
decomposition cannot be used with a target of 42 points, buhigh-quality nonuniform grids; see, eQu and Gunzburger
a 12 processor decomposition can be used with a target 2002; Du et al.(2003h 20068; Ju et al.(2011); Nguyen
162 points. et al.(2008.
In general, the decomposition should be created using the As defined above, every iteration of Lloyd’'s method re-
target density function to provide optimal load balancing, andquires the construction of the Voronoi tessellation of the cur-
to improve robustness of the algorithm. Results for these sortent set of generators followed by the determination of the

©)

methods are presented in SetR.2 centroids of the Voronoi cells. However, the construction of
the Voronoi tessellation can be avoided until after the iter-

2.2 Application to the construction of centroidal ation has converged and instead, the iterative process can
Voronoi and Delaunay tessellations be carried out with only Delaunay tessellation constructions.

: . . Thus, the first task within every iteration of Lloyd’s method
Given a Voronoi tessellatiolr = {V;};_, of a bounded re- g 5 construct the Delaunay tessellation of the current set of
gion @ C R* corresponding to the set of generatdts=  generators. The parallel algorithm for the generation of De-
{x;};_, and given a nonnegative functigrix) defined over  Jaunay tessellations given in Se2tlis thus especially use-

Q, referred to as thpoint-density functiopwe can define the  ful in reducing the costs of the multiple tessellations needed

centre of masser centroidx* i of each Voronoi region as in CVT construction.
After the Delaunay tessellation of the current generators is
fv xp(x)dx 1 5 computed, every Voronoi cell centre of mass must be com-
fv p(x)dx ’ J=5on (2) puted by integration, so its generator can be replaced by the

centre of mass. Superficially, it seems that we cannot avoid
In general x ; ;éx}k., i.e. the generators of the Voronoi cells constructing the Voronoi tessellation to do this. However, it
do not coincide with the centres of mass of those cells. Thes easy to see that one does not actually need the Voronoi
special case for whicl ; =x’; forall j=1,...,n,ie. for tessellation and instead one can determine the needed cen-
which all the generators coincide with the centres of mass otroids from the Delaunay tessellation. For simplicity, we re-
their Voronoi regions, is referred to ascantroidal Voronoi  strict this discussion to tessellationsIkf. Each triangle in

tessellation(CVT). a Delaunay triangulation contributes to the integration over
Given 2, n, andp(x), a CVT of @ must be constructed. three different Voronoi cells. The triangle is split into three
The simplest means for doing so is Lloyd’s methatbyd, kites, each made up of two edge midpoints, the triangle cir-

1982 in which, starting with an initial set of distinct gener-  cumcentre, and a vertex of the triangle. Each kite is part of
ators, one constructs the corresponding Voronoi tessellatiorthe Voronoi cell whose generator is located at the triangle
then determines the centroid of each of the Voronoi cells,vertex associated with the kite. Integrating over each kite and
and then moves each generator to the centroid of its Voronoupdating a portion of the integrals in the centroid formula
cell. These steps are repeated until satisfactory convergendeg. (2) allows one to only use the Delaunay triangulation to
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determine the centroids of the Voronoi cells. Thus, because In summary, the algorithm for the construction of a CVT
both steps within each Lloyd iteration can be performed us-in parallel consists of the following steps; the steps in Roman
ing only the Delaunay triangulation, determining the gener-font are the same as in the algorithm of S@ctwhereas the
ators of a CVT does not require construction of any Voronoiitalicized steps, as well as the do loop, are additions for CVT
tessellations nor does it require any mesh connectivity infor-construction:

mation. If one is interested in the CVT, one need only con-

struct a single Voronoi tessellation after the Lloyd iteration — define overlapping balls that cover the given region;
has converged; if one is interested in the Delaunay tessella-

tion corresponding to the CVT, then no Voronoi construction — while not convergedio

is needed.
To make this algorithm parallel, one can compute the — sort the current point set;
Voronoi cell centroids using the local Delaunay tessellations )
and not on the stitched-together global one. However, be- — construct in parallel the local Delaunay tessella-
cause the local Delaunay tessellations overlap, one has to en- tions;

sure that each generator is only updated by one region, i.e. by
only one processor. This can be done using one of a variety
of domain decomposition methods. We use a coarse Voronoi
diagram corresponding to the region centresEach proces-
sor only updates the generators that are inside of its coarse ~ — in parallel, determine the centroids of the Voronoi
Voronoi cell. Because Voronoi cells are non-overlapping, cells by integrating over simplicgs
each generator will only get updated by one processor. Af-
ter all the generators are updated, each coarse region needs
to transfer its newly updated points only to its adjacent re-
gions and not to all active processors. This limits each pro- — test the convergence critefia
cessor's communications to roughly six sends and receives,
regardless of the total number of processors used.

We use two metrics teaheck for the convergenad the
Lloyd iteration, namely the,> and ¢,, norms of generator
movement given by —end

— remove from the Delaunay tessellations simplices
which are not guaranteed to satisfy the circum-
sphere property;

— move each generator to the corresponding cell cen-
troid;

— communicate new generator positions to neigh-
bouring balls

15 od new2\ Y2 — construct the Delaunay tessellation corresponding to the
tonorm= (; X;(xj — x5 ) and CVT as the union of the modified local Delaunay tessel-
J= .
lations.

; J

foonorm= max (x99 — x"eW),
j=1,...n J

respectively, are compared with a given tolerance; here, old Parallel Delaunay and Voronoi tessellation
and new refer to the previous and current Lloyd iterates. If  construction on the sphere
either norm falls below the tolerance, the iterative process is
deemed to have converged. Thg norm is more strict, but Replacing the planar constructs of Delaunay triangulations
both norms follow similar convergence paths when plottedand Voronoi tessellations with their analogous components
against the iteration number. on the sphere, i.e. on the surface of a balR¥) creates the

A variety of point sets can be used ioitiate Lloyd’s spherical versions of Delaunay triangulations and Voronoi
method for CVT construction. The obvious one is Monte tessellations. The Euclidean distance metric is replaced by
Carlo points Metropolis and Ulam1949. These can either the geodesic distance, i.e. the shortest of the two lengths
be sampled uniformly ovef2 or sampled according to the along the great circle joining two points on the sphere. Trian-
point-density functiono (x). The latter approach usually re- gles and Voronoi cells are replaced with spherical triangles
duces the number of iterations required for convergence. Onand spherical Voronoi cells whose boundaries are geodesic
can instead use a bisection method to build fine grids fromarcs. To develop a parallel Delaunay and Voronoi tessella-
a coarse gridHeikes and Randalll995. To create a bisec- tion construction algorithm on the sphere, we could try to
tion grid, a coarse CVT is constructed using as few pointsparallelize the STRIPACK algorithm é&enka(1997). Here,
as possible. After this coarse grid is convergedRf one  however, we take a new approach that is based on a combi-
would add the midpoint of every Voronoi cell edge or Delau- nation of stereographic projections (which we briefly discuss
nay triangle edge to the set of points. This causes the overalh Sect.3.1) and the algorithm of Sec?.1 applied to planar
grid spacing to be reduced by roughly a factor of two in everydomains. The serial version of the new Delaunay tessellation
cell so that the refined point set is roughly four times larger. construction algorithm is therefore novel as well.
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3.1 Stereographic projections

Stereographic projections are special mappings between the
surface of a sphere and a plane tangent to the sphere. Not only
are stereographic projections conformal mappings, meaning
that angles are preserved, but they also preserve circularity,
meaning that circles on the sphere are mapped to circles on
the plane. Stereographic projections also map the interior of
these circles to the interior of the mapped circlBewers
et al, 1998 Saalfeld 1999. For our purposes, the impor-
tance of circularity preservation is that it implies that stereo-
graphic projections preserve the Delaunay circumcircle prop-
erty. This follows because triangle circumcircles (along with
their interiors) are preserved. Therefore, Delaunay triangu-
lations on the sphere are mapped to Delaunay triangulations
on the plane and conversely. As a result, stereographic pro-
jections can be used to construct a Delaunay triangulation of
a portion of the sphere by first constructing a Delaunay tri-
angulation in the plane, which is a simpler and well-studied
task.

Without loss of generality, we assume that we are given
the unit sphere ifR3 centred at the origin. We are also given
a plane tangent to the sphere at the poifithe focus poinyf
is defined as the reflection phbout the centre of the sphere,
i.e. f is the antipode of. Let p denote a point on the unit
sphere. The stereographic projectiorpadnto the plane tan- (b)
gent atz is the pointg on the plane defined by
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Fig. 2. (a) An overlapping subdivision of the sphere inko= 12
1 spherical caps. The cap centrgs are the projections onto the
q=sp+1-5f, where s =2—————. (4  gonere of the centroids of the 12 pentagons of the inscribed reg-
f-(f-p _ .

o _ _ ~ularicosahedron. Each coloured ring represents the edge of cap of
For our purposes, it is more convenient to define the projecradiusry. (b) A 10 242 generator Delaunay triangulation by the par-
tion relative tof rather thanf. The simple substitution of allel algorithm.
f =—tinto Eq. @) results in

g=sp+(s—Dt, where s= 2; (5) defined that consists of the indices of all the spherical caps

t-(p+1) U; e U,i #k, that overlap withU;. From the given point set
P, we then creat& smaller pointset®,,k =1,..., N, each
of which consists of the points iA which are in the spherical
capUy. Due to the overlap of the spherical cdpg a point
3.2 Parallel algorithm for spherical Delaunay in P may end up belonging to multiple points sés
triangulation construction At this point in Sect2.1, we assigned each of the point
subsetsP, to a processor and constructéd Delaunay
A spherical Delaunay triangulation (SDT) is the Delaunay tessellations in parallel. Before doing so in the spherical case,
triangulation of a point seP defined on the surface of the we project each of the point sefy onto the plane tangent
sphere. We adapt the algorithm developed in S&dtfor at the corresponding point,. This additional step allows
domains inR¥ to develop a parallel algorithm for the con- each processor to construct a planar Delaunay triangulation
struction of SDTs. The most important adaptation is to useinstead of spherical one. Specifically, for eaghwe con-
stereographic projections so that the actual construction oftruct the planar point s, = S(Py; ti), whereS(Py; ty)
Delaunay triangulations is done on planar domains. denotes the stereographic projection of the pointB;iimnto
We are now given a set of poinfs= {xj};’.:1 onasubset the plane tangent to the sphere at the pojiniWe then as-
Q of the sphere2 may be the whole sphere. We begin by sign each of the point setg, to a different processor and
coveringQ by a setU = {Uk(tk,rk)},f’:l of N overlapping  have each processor construct the planar Delaunay triangu-
“umbrellas” or spherical cap8;, each of which is defined lation of its point setP,. Because stereographic projections
by a centre point; and geodesic radiug. See Fig2a. For  preserve circularity and therefore preserve the Delaunay cir-
each spherical capy, a connectivity (or neighbours) listis cumcircle property, it is then just a simple matter of keeping

The definitions Eqgs.4) and 6) can also be used to define
stereographic projections & for k > 3.
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track of triangle vertex and edge indices to define the spheriTable 1. Description of generator count labels, along with approxi-
cal Delaunay triangulations of the point séts mate grid resolution on an earth sized sphere.

As in Sect.2.1, we now proceed to remove spherical tri-
angles that are not guaranteed to be Delaunay with respect Generator Label Generator Count  Approx. Resolution
to the global point seP. Instead of Eq.X), in the spherical

| . coarse 40962 120km
case, triangles must satisfy medium 163842 60km
fine 2621442 15km

cos Y|ty =il + 75 < rx,

for that guarantee to be in effect, whereand7; are the
centre and radius, respectively, of the circumsphere of the
i-th triangle in the local Delaunay tessellation Bf. Once
the possibly unwanted triangles are removed, we can, as i
Sect.2.], transparently stitch together the modified Delau-

naly trlangulat|0trk113 |nlto a_tghlobfal C;Ee' fructi f heri The parallel CVT construction algorithm of Se2t2is eas-

h summary, th€ aigorithm for the construction ot a spheri- ily adapted for the construction of centroidal Voronoi tessel-
cal Delaunay tessellation in parallel consists of the 1‘ollowmgI tions on the sphere (SCVTs). Obviously, one uses the sphe-
stepti, th;e tTg ']t__al'C'ZEd steps are the ones added to the Fical version of the Delaunay triangulation algorithm as given
gonthm ot Secte. in Sect.3.2instead of the version of Se@.1 One also has to

— define overlapping spherical caps, k = 1,..., N, that  dealwith the fact that if one computes the centroid of a sphe-

|;)f‘3 Application to the construction of spherical
centroidal Voronoi tessellations (SCVTs)

cover the given regiof2 on the sphere; rical Voronoi cell using Eq.4), then that centroid does not
lie on the sphere; a different definition of a centroid has to be
— sort the given point seP into the subsetsPy, k = used Du et al, 20033. Fortunately, it is shown iDu et al.

1,..., N, each containing the points it that are inUx; (20033 that the correct centroid can be determined by using
Eqg. @), which yields a point inside the sphere, and then pro-
jecting that point onto the sphere (actually, this was shown
to be true for general surfaces) so that the correct spherical
centroid is simply the intersection of the radial line going

— fork=1,...,N, construct in parallel the planar Delau- through the point determined by E®) @nd the sphere.
nay triangulatiori; of the points set;

—fork=1,..., N, construct in parallel the point sy
by stereographically projecting the pointsih onto the
plane tangent to the sphere at the paipt

— fork =1, ..., N, construct in parallel the spherical De- 4 Results
launay triangulation7; by mapping the planar Delau-

nay triangulationT, onto the sphere All results are created using a high performance computing

(HPC) cluster with 24 AMD Opteron “model 6176" cores
— fork=1,..., N, construct in parallel the spherical tri- per node and 64 GB of RAM per node.
angulationT; by removing fromTj, all simplices that Results are presented for three different generator counts,
are not guaranteed to satisfy the circumsphere propertyand are presented with the labels “coarse”, “medium”, and
] ) “fine”. Table 1 can be used to refer these labels to actual
— construct the Delaunay tessellation Bfas the union  ¢ounts as well as approximate resolution on an earth sized
of the N modified spherical Delaunay tessellations gppere,

{Tk}lljzl- We use STRIPACKRenka 1997, a serial Fortran 77 As-
sociation of Computing Machinery (ACM) Transactions on
Mathematical Software (TOMS) algorithm that constructs
Delaunay triangulations on a sphere, as a baseline for com-
parison with our approach. It is currently one of the few well-
known spherical triangulation libraries available.

The algorithm described in this paper has been imple-
br_nented as a software packaged referred to as MPI-SCVT,
nd is freely available followingacobsen and Womeldorff

For an illustration of a spherical Delaunay triangulation de-
termined by this algorithm see Figb.

Because of the singularity in Eq€l) (or (5) for p = f, the
serial version of this algorithm, i.e. iV =1, can run into
trouble whenever the antipodg of the tangency point is
in the spherical domaife. Of course, this is always the case
if © is the whole sphere. In such cases, the number of su

domains used cannot be less than two, even if one is runnin 7 .
the above algorithm in serial mode. 013. It utilizes the Triangle softwareshewchuk1996 to

In setting the extent of overlap, i.e. the radii of the spheri- perform planar triangulations of specified point sets in the

cal caps, as the maximum geodesic distance from the a Ca@ngent planes of each partition of the domain.
centret; to neighbouring cap centreg, the geodesic dis-
tance is given by cos (¢, - ;).
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4.1 Delaunay triangulations of the full sphere 200000 — ; — ‘ ‘
Uniform Decomposition ———

Table2 compares MPI-SCVT with STRIPACK for the con-

struction of spherical Delaunay triangulations. The results 150000 ¢

given compare the cost to compute a single triangulation of
a medium resolution global grid. The results show, for the
computation of a full spherical triangulation MPI-SCVT is
roughly a factor of 7 slower than STRIPACK in serial mode,
and a factor of 12 faster when using 96 processors.

4.2 Initial generator placement and sorting heuristics
for SCVT construction

Number of sorted points in region

100000
0 Jﬂ i L

5 10 15 20 25 30 35 40
We now examine the effects of initial generator placement (3) Uniform Region number
and sorting heuristics with regards to SCVT generation. The

i i i i isi 200000 ; ——
res.ults. qfi this sec_:t_|0n are |n.tended to guide decisions about < X16 Decomposition =——
which initial condition or sorting method we use latertogen- >
erate SCVTs. E o000 L N 0 mpldn _

4.2.1 Initial generator placement §

. - = 100000 r
Because most climate models are shifting towards global &
high-resolution simulations, we begin by exploring the cre- 3
ation of a fine resolution grid. We compare SCVT grids ©° 50000 |
constructing starting with uniform Monte Carlo and bisec- 2 H i
tion initial generator placement. The times for these grids to S H } M W

' z 0 TﬁATT TT

converge to a tolerance 1®in the ¢, norm are presented.

The 107 threshold is the strictest convergence level that the
Monte Carlo grid can attain in a reasonable amount of time,
and is therefore chosen as the convergence threshold for this 200000

0O 5 10 15 20 25 30 35 40
(b) x16 Region number

study. However, the bisection grid can converge well beyond & Voronoi Decomposition =
this threshold in a similar amount of time. Tat8eshows g

timing results for the parallel algorithm for the two differ- £ 150000 |

ent options for initial generator placement. Although the time é

spent converging a mesh with Monte Carlo initial placements 8

is highly dependent on the initial point set, it is clear from g 100000 r

this table that bisection initial conditions provide a significant

speedup in the overall cost to generate an SCVT grid. Based ‘& 50000 |

on the results presented in TaBland unless otherwise spec- g

ified, only bisection initial generator placements are used in &

subsequent experiments. Bisection initial conditions are not £ 0

specific to this algorithm, and can be used to accelerate any 0 5 10 15 20 25 30 35 40
SCVT grid generation method. (c) Voronoi Region number

4.2.2 Sorting of points for assignment to processors Fig. 3. Number of points each processor has to triangu(afe(b),

and(c) use the sorting approaches corresponding to the three rows
As described in SecP.1.1 the MPI-SCVT code utilizes two  of Table4. All plots were created with the same medium resolution
methods for determining a region’s point set. Whereas the do@rid.
product sort method is faster, it provides poor load balanc-
ing in variable resolution meshes, thus causing the iteratiorboth utilize the distance sort, but differ in the decomposition
cost to be greater. Timings using both approaches are givensed. Uniform uses a quasi-uniform 42 region decomposi-
in Table 4. Figure 3 shows the number of points that each tion, whereasx8 uses a variable resolution decomposition
processor has to triangulate on a per iteration basis. Timwith sixteen to one ration in maximum and minimum grid
ings presented are for a medium resolution grid, 42 regionssizes. Timings labeled Voronoi use the same decomposition
42 processors, and are averages over 3000 iterations. Threes x 8, but use the Voronoi sort method rather than the dis-
sets of timings are given. Timings labeled Uniform ax8é tance sort method.
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Table 2. Comparison of STRIPACK with serial and parallel versions of MPI-SCVT for computation of a full spherical triangulation. Com-
puted using the same initial conditions for a medium resolution grid.

Algorithm Processors Regions Time (ms) Speedup (STRIPACK/MPI-SCVT)

STRIPACK 1 1 563.87 Baseline
MPI-SCVT 1 2 3724.08 0.15
MPI-SCVT 2 2 2206.06 0.26
MPI-SCVT 96 96 45.75 12.33

Table 3. Timing results for MPI-SCVT with bisection and Monte Carlo initial generator placements and the speedup of bisection relative to
Monte Carlo. Final mesh is fine resolution.

Timed Portion Bisection (B) Monte Carlo (MC) Speed%
Total Time (ms) 112890 358003000 3171.25
Triangulation Time (ms) 10887 48034600 4412.11
Integration Time (ms) 30893 66 374 400 2148.52
Communication Time (ms) 70878 110958 000 1565.47

Table 4. Timings based on sorting approach used. Uniform uses a coarse quasi-uniform SCVT to define region centres and their associated
radii and sorts using maximum distance between centres and neighbouring ceBtteses a coarse SCVT with a 8 to 1 ratio in grid sizes

to effect the same type of sorting. Voronoi uses the sai@&oarse SCVT grid to define regions centres and sorts using the neighbouring
Voronoi cell-based sort.

Sorting Decomposition Costs Of Different Algorithm Steps Cost Per
Approach Grid Triangulation Integration Communication Iteration Speedup
Distance Uniform 14.53 37.62 1314.22 1396.53 Baseline
Distance x8 35.84 92.91 865.32 995.04 1.40
\oronoi x8 16.71 86.24 177.55 305.85 4.56
Timings presented in Tabkeare taken relative to proces- 1= ———————
. . AN Density Function
sor number 0, and as can be seen in Bag.processor 0 has
a very small load which causes the majority of its iteration 0.8 \\ 1
time being spent waiting for the processors with large loads
to catch up; this idling time is included in the Communica- > 06 1
tion column of the table. g \
Table4 and Fig.3 show there is a significant advantage to O 04+ 1

the Voronoi based sort method in that it not only speeds up \
the overall cost per iteration, but also provides more balanced 02t 1
loads across the processors. '

\\\“ = L L

0

4.3 SCVT generation o o5 1 15 2 25 3
Distance from centre of density function (Radians)

We now provide both quasi-uniform and variable resolution ) _ o ) _

SCVT generation results. The major contributor to the differ- f'g'bd" Defnslty fu?g'g”twat Cr?ﬁtes agrid W'LhtLes‘;'“t'O”S,that d'Tf;]

ences in computational performance arises as a result of load' - 2 'actor of 5 between the coarse and the fine regions. the

. . . . . maximum value of the density function is 1 whereas the minimum

balancing differences. Results in this section make use of thgalue is(1/8)4

density function

P = [tanh<w> + 1} +y (6

2=y o sitions to relatively small values of across a radian dis-
which is visualized in Fig4, wherex; is constrained to lie tance ofa. The distance betweer. andx; is computed as
on the surface of the unit sphere. This function results in|x. — x;| = cos 1(x. - x;) with a range from O tor.
relatively large value op within a distances of the point Figure5 shows an example grid created using this density
x., where g is measured in radians and. is also con-  function, withx. set to ber. = 37/2, ¢. = /6, wherer
strained to lie on the surface of the sphere. The function trandenotes longitude angl latitude,y = (1/8)*, 8 = =/6, and
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(a) Coarse region (b) Transition region (c) Fine region

Fig. 5. Different views of the same variable resolution grid created using the density functioB) Hq) €hows the coarse region of the grid,
(b) shows the transition region, aifc) shows the fine region.

Table 5.Comparisons of SCVT generators using STRIPACK, serial MPI-SCVT, and parallel MPI-SCVT. Cost per triangulation and iteration
are presented. Speedup is compared using the cost per iteration. Computed using the same initial conditions for a medium resolution grid.
Variable resolution results are presented for MPI-SCVT only.

Algorithm Procs Regions Triangulation Iteration Speedup Per Iteration
Time (ms) Time (ms) (STRIPACK/MPI-SCVT)
STRIPACK 1 1 563.871 3009.74 Baseline
MPI-SCVT x1 1 2 3480.43 9485.78 0.32
MPI-SCVT x1 2 2 2114.38 5390.82 0.56
MPI-SCVT x1 96 96 14.23 207.26 14.52
MPI-SCVT x8 96 96 16.71 305.855 9.84

1.0e+05 1.0e+06

Triangulation —+— ‘ Triangluation —+—
Integration 1.06405 Integration J
10404 | ] Communication % /

1.0e+04

1.0e403 F i 1.0e+03

1.0e+02

1.0e+02 E 1.0e+01

1.0e+00
1.0e+01 |- B

1.0e-01

Average Time (ms)
Average Time (ms)

1.0e+00 1.0e-02
1.0e+02 1.0e+03 1.0e+04 1.0e+05 1.0e+06 1.0e+07 1.0e+01 1.0e+02  1.0e+03  1.0e+04  1.0e+05  1.0e+06  1.0e+07

Number of Generators Number of Generators

Fig. 6. Timings for STRIPACK-based SCVT construction for var- Fig. 7. Timings for various portions of MPI-SCVT using 2 pro-
ious generator counts. Red solid lines represent the time spent inessors and 2 regions. As the problem size increases the slope for
STRIPACK computing a triangulation whereas green dashed linesoth triangulation (red-solid) and integration (green-dashed) remain
represent the time spent integrating the Voronoi cells outside ofroughly constant.

STRIPACK in one iteration of Lloyd’s algorithm.

of the story. For SCVT generation, a triangulation needs to
o = 0.20 with 10 242 generators. This set of parameters usedie computed at every iteration of Lloyd’s algorithm as de-
in Eq. ) is referred to ax8. The quasi-uniform version is  scribed in Sec.2 When using STRIPACK, the full triangu-
referred to as<1. lation needs to be computed at every iteration, but with MPI-
In Sect.4.1, we showed that MPI-SCVT performs compa- SCVT only each regional triangulation needs to be computed
rably to STRIPACK when computing a single full triangu- at each iteration. This means the merge step can be skipped
lation. However, computing a full triangulation is only part resulting in significantly cheaper triangulations.
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Fig. 8. Same information as in Fid.but for 96 processors and

96 regions. 1000 |-

100

Figure 6 shows the performance of a STRIPACK-based
SCVT construction as the number of generators is increased
through bisection as mentioned in S&tR Values are aver-

Average Time (ms)

ages over 2000 iterations. The green dashed line represents o1 b/ ]
the portion of the code that computes the centroids of the Triangulation —+—
Voronoi regions whereas the red solid line represent the por- oo Integration j
tion of the code that computes the Delaunay triangulation. o001 X Communication

Table5 compares STRIPACK with the triangulation rou- 1 10 100
tine in MPI-SCVT that is called on every iteration. The re- Number of Processors

sults presented relative to MPI-SCVT are averages over 2000
iterations.
As a comparison with Fig6, in Figs.7 and8 we present

1e+06

100000

timings made for MPI-SCVT for two and 96 regions and pro- 10000
cessors, respectively, as the problem size, i.e. the number ofg 1000
generators, increases. A minimum of two processors are usedg 100 |

because the stereographic projection used in MPI-SCVT has
a singularity at the focus point.
Whereas Fig.7 shows performance similar to that of

10 F

Average Ti

1B

STRIPACK (see Fig6), Fig. 8 shows roughly two orders E Triangulation —+— ]
of magnitude faster performance relative to STRIPACK. As 001 Comr':ﬁ?égggﬂ N
mentioned previously, this is only the case when creating 0001 w

SCVTs as the full triangulation is no longer required when ! 0 100
computing a SCVT in parallel. Number of Processors

Fig. 9. Timing results for MPI-SCVT vs. number of processors for
three different problem sizes. Red solid-lines represent the cost of
. o computing a triangulation, whereas green-dashed lines represent the
This section is intended to showcase some general perfoisst of integrating all Voronoi cells, and blue-dotted lines represent
mance results of MPI-SCVT. Figua—c show the timings  the cost of communicating each region’s updated point set to its
for a coarse resolution grid, a medium resolution grid, and aneighbours.
fine resolution grid, respectively.

To assess the overall performance of the MPI-SCVT algo-
rithm, scalability results are presented in Fi§. Figure10a the number of generators increases (as seen inlBig.c),
shows that this algorithm can easily under-saturate procesthe limit for being under-saturated is higher. Currently in the
sors; when this happens, communication ends up dominatalgorithm, communications are done asynchronously using
ing the overall runtime for the algorithm which is seen in non-blocking sends and receives. Also, overall communica-
Fig. 9a; as a result, scalability ends up being sub-linear. Astions are reduced by only communicating with a region’s

4.4 General algorithm performance
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as the integration routines are embarrassingly parallel. Modi-
fication of the data structures used could also enable the gen-
eration of ultra-high resolution meshes (100M generators).
In principle, because all of the computation is local this al-
gorithm should scale linearly very well up to hundreds if not
thousands of processors.

5 Summary

A novel technique for the parallel construction of Delau-
nay triangulations is presented, utilizing unique domain de-
composition techniques combined with stereographic pro-
jections. This parallel algorithm can be applied to the gen-
eration of planar and spherical centroidal Voronoi tessella-
tions. Results were presented for the generation of sphe-
rical centroidal Voronoi tessellations, with comparisons to
STRIPACK, a well-known algorithm for the computation of
spherical Delaunay triangulations. The algorithm presented
in the paper (MPI-SCVT) shows slower performance than
STRIPACK when computing a single triangulation in serial
and faster performance when using roughly 100 processors.
When paired with a SCVT generator, the algorithm shows
additional speed up relative to a STRIPACK based SCVT
generator.
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